Note: 1. Assume suitable data if necessary
2. Figures to the right indicate full marks
3. Question No. 1 is compulsory
4. Solve any three out of the remaining five questions
Q1. Solve any four
A Derive an expression for the critical radius of insulation for the sphere. 5
B State Fourier and Biot numbers? Also explain the significance of these numbers. 5
C Draw a boiling curve and identify the different boiling regimes. Explain each regime 5
in brief.
D State and explain Fick's Law of diffusion.5
E Explain the valve timing diagram for four-stroke SI engines. 5
F Explain EURO and BHARAT norms.
Q2.A A Cylindrical tank of 1.0 m diameter and 5 m total length has hemispherical ends. Itcontains liquid oxygen, which has a boiling point and heat of vaporization of $-180^{\circ} \mathrm{C}$and $210 \mathrm{~kJ} / \mathrm{kg}$, respectively. It is required to insulate the tank so as to reduce the boil-off rate of oxygen in a steady state to $14 \mathrm{~kg} / \mathrm{h}$. Determine the thermal conductivity ofthe insulating material if its maximum thickness is limited to 70 mm . Assume roomtemperature outside the insulation as $25^{\circ} \mathrm{C}$.
B During the trial of a single-cylinder, four-stroke oil engine, the following results were obtained.

Cylinder diameter
Stroke
Mean effective pressure
Torque
Speed
Oil consumption
Calorific value of fuel
Cooling water flow rate
Air used per kg of fuel
Rise in cooling water temperature
Temperature of exhaust gases
Room Temperature
Mean specific heat of exhaust gas
Specific heat of water

20 cm .
40 cm
6 bar
407 Nm
250 rpm
$4 \mathrm{~kg} / \mathrm{h}$
$43 \mathrm{MJ} / \mathrm{kg}$
$4.5 \mathrm{~kg} / \mathrm{min}$
30 kg
$45^{\circ} \mathrm{C}$
$420^{\circ} \mathrm{C}$
$20^{\circ} \mathrm{C}$
$1 \mathrm{~kJ} / \mathrm{kg}$ K
$4.18 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$
Find the IP, BP and draw up a heat balance sheet for the test in kJ / h.

Q3.

A Discuss the electrical analogy of combined heat conduction and convection in twolayer composite wall.
B A steel ball 50 mm in diameter and at $900^{\circ} \mathrm{C}$ is placed in a still atmosphere of $30^{\circ} \mathrm{C}$.
Calculate the initial rate of cooling of the ball in ${ }^{\circ} \mathrm{C}$ per min.
C Explain with neat sketch stages of combustion of the CI engine.

Q4.

A A steel rod $\left(\mathrm{k}=32 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}\right), 12 \mathrm{~mm}$ in diameter and 60 mm long, with an insulated end, is to be used as a spine. It is exposed to surroundings with a temperature of $60^{\circ} \mathrm{C}$ and a heat transfer coefficient of $55 \mathrm{~W} / \mathrm{m}^{2 \circ} \mathrm{C}$. The temperature at the base of fin is $95^{\circ} \mathrm{C}$. Determine:
(i) The fin efficiency.
(ii) The temperature at the edge of the spine.
(iii) The heat dissipation.

B State and explain kirchoff's law.
C With suitable example/ values prove that during the load test of an engine, increases in the load increases the mechanical efficiency of the engine.
Q5.
A A counter-flow double pipe heat exchanger using superheated steam is used to heat water at the rate of $10500 \mathrm{~kg} / \mathrm{h}$. The steam enters the heat exchanger at $180^{\circ} \mathrm{C}$ and leaves at $130^{\circ} \mathrm{C}$. The inlet and exit temperatures of water are $30^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$, respectively. If the overall heat transfer coefficient from steam to water is 814 $\mathrm{W} / \mathrm{m}^{2}{ }^{\circ} \mathrm{C}$, calculate the heat transfer area. What would be the increase in the area if the fluid flows were parallel?

B A 4-stroke motorcycle petrol engine cylinder consists of 15 hollow fins. If the outside and inside diameters of each fin are 200 mm and 100 mm , respectively, the average fin surface temperature is $475^{\circ} \mathrm{C}$, and the atmospheric air temperature is $25^{\circ} \mathrm{C}$, calculate the heat transfer rate from the fins When the motor cycle is running at a speed of $60 \mathrm{~km} / \mathrm{h}$. The fin may be idealised as a single horizontal flat plate of the same area.
Assume characteristic length is 0.9 times the outside diameter.
$\overline{N u}=0.036(R e)^{0.8}(P r)^{0.33}$
$\overline{N u}=0.54(G r . P r)^{0.25}$
The thermophysical properties of air at $250^{\circ} \mathrm{C}$ are
$\mathrm{k}=4.266 \times 10^{-2} \mathrm{~W} / \mathrm{m}{ }^{\circ} \mathrm{C}, \mathrm{v}=40.61 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}, \operatorname{Pr}=0.677$
A Explain with a neat sketch working of the battery ignition system.
B Explain the Fouling of Heat Exchangers.
C Calculate the heat transfer from a 60 W incandescent bulb at $115^{\circ} \mathrm{C}$ to ambient air at $25^{\circ} \mathrm{C}$. Assume the bulb is a sphere of 50 mm in diameter. Also, find the percentage of power lost by free convection.

The correlation is given by: $\mathrm{Nu}=0.60(\mathrm{Gr} . \mathrm{Pr})^{1 / 4}$
The thermophysical properties of air at $70^{\circ} \mathrm{C}$ are $\mathrm{k}=2.964 \times 10^{-2} \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}, \mathrm{v}=20.02 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s} \operatorname{Pr}=0.694$

D Write down the general heat conduction equation in cartesian coordinates. State the assumptions and get the Fourier, Poisson's and Laplace equations from it.

